Podstawę w tym zakresie stanowią przyrządy do pomiarów wyłączników RCD. Nie bez znaczenia pozostają również mierniki rezystancji izolacji, mierniki cęgowe, analizatory jakości zasilania oraz mierniki bezpieczeństwa urządzeń elektrycznych. Warto również przyjrzeć się nieco bliżej miernikom parametrów uziemień oraz przyrządom do pomiarów instalacji fotowoltaicznych.
Podczas prac przy instalacjach i urządzeniach elektrycznych ważna jest kompleksowość przeprowadzanych pomiarów. Kluczową rolę odgrywa więc możliwość wykonania pomiarów wszystkich parametrów wyłączników różnicowoprądowych.
Nie bez znaczenia pozostaje przy tym bezpieczeństwo pracy. Stąd też istotną rolę odgrywa ochrona przed przekroczeniem bezpiecznego napięcia podczas pomiaru. Oprócz tego, są wykrywane zamiany przewodów L i N. Przyda się przy tym możliwość szybkiego sprawdzenia połączeń w gniazdku za pomocą elektrody dotykowej. Do kompleksowości prac z pewnością przyczyni się funkcja woltomierza napięć przemiennych oraz pomiar rezystancji pętli zwarcia. Zmierzyć można również prąd zwarciowy. Istnieje możliwość wyboru napięcia bezpiecznego na poziomach 25 i 50 V, a dla wyłączników selektywnych dodatkowo 12,5 V.
Typowy przyrząd pomiarowy znajduje zastosowanie w instalacjach jedno- i trójfazowych prądu przemiennego. Analizie pod względem parametrów poddaje się wszystkie rodzaje wyłączników przy sinusoidalnym kształcie przebiegu wymuszanego prądu różnicowego. Przyrządy współpracują z wyłącznikami zwykłymi i selektywnymi o prądach wynoszących 10, 30, 100, 300 i 500 mA.
Nowoczesne mierniki cechuje pomiar rezystancji małym prądem z sygnalizacją akustyczną i optyczną. Zakres pomiarowy przyrządów przeznaczonych do oceny rezystancji izolacji niejednokrotnie przekracza 100 GΩ. Napięcia pomiarowe są wybierane w zakresie 50, 100, 250, 500 oraz 1000 V. W niektórych przyrządach przewidziano płynną regulację pomiędzy 50 a 1000 V z dokładnością 10 V. Pomiar przeprowadza się metodą dwu- oraz trójprzewodową. Niektóre modele pozwalają na pomiar za pomocą adaptera w gnieździe sieciowym. Jest przy tym przeprowadzana automatyczna analiza kombinacji pomiarowych ze wskazaniem prądu upływu. Istotne pozostaje samoczynne rozładowanie pojemności mierzonego obiektu po zakończeniu pomiaru rezystancji izolacji. Wykonuje się bezpośredni pomiar jednego lub dwóch współczynników absorpcji. Przyrząd zapamiętuje ustawienia wartości napięcia i czasów. Z pewnością przydatne rozwiązanie stanowi pomiar napięcia stałego i przemiennego oraz pomiar pojemności badanego obiektu. W sposób akustyczny są wyznaczane pięciosekundowe odcinki czasu, które ułatwiają zdjęcie charakterystyk czasowych przy pomiarze rezystancji izolacji. W niektórych modelach przewidziano możliwość pomiaru ciągłości połączeń ochronnych i wyrównawczych prądem ≥ 200 mA (zgodnie z normą PN-EN 61557-4) z jednoczesnym przeprowadzeniem autokalibracji przewodów pomiarowych.
Oferowane na rynku mierniki cęgowe łączą w sobie funkcje miernika wielkości elektrycznych, rejestratora jakości energii oraz analizatora mocy. Interesującym rozwiązaniem są przyrządy, gdzie cęgi zbudowano w oparciu o cewkę Rogowskiego. Stanowi ona element sztywnych cęgów pomiarowych i nie jest elastyczną przystawką, która znajduje rozwiązanie w tradycyjnych przyrządach. Zyskuje się więc cęgi o grubości wynoszącej zaledwie 10 mm. Pomiary w szafach rozdzielczych i sterowniczych, gdzie przestrzeń jest ograniczona, mogą być więc prowadzone sprawnie i bezpiecznie. Cęgi o zmniejszonych wymiarach przydadzą się również podczas pomiarów przewodów połączonych w wiązki.
Przydatne rozwiązanie stanowi funkcja THD-F%. Pozwala ona na natychmiastową ocenę zawartości harmonicznych w mierzonych przebiegach napięciowych i prądowych. Parametr THD-F% definiuje się jako stosunek sumarycznej rzeczywistej wartości skutecznej wszystkich harmonicznych do rzeczywistej wartości skutecznej odpowiadającej częstotliwości podstawowej.
Przydać się może szybkie przejście do pomiaru częstotliwości podczas analizy wartości prądu lub napięcia. W nowoczesnych miernikach cęgowych jest również analizowany charakter obciążenia. Można skorzystać z funkcji pozwalającej na pomiar mocy i współczynnika PF. W niektórych modelach przewidziano możliwość pomiaru i rejestracji zużycia energii w układach 1-fazowych i 3-fazowych zrównoważonych. Interesujące rozwiązanie stanowi pomiar napięcia o niskiej impedancji wejścia.
Spektrum zastosowań analizatorów jakości zasilania jest bardzo szerokie. Obejmuje ono bowiem energetykę zawodową, służby utrzymania ruchu zakładów przemysłowych oraz podmioty, które zajmują się usługowym analizowaniem sieci.
Jak wiadomo przynajmniej kilka parametrów określa jakość energii elektrycznej. Są to przede wszystkim właściwości napięcia, takie jak jego częstotliwość, wartość (w tym przejściowa), asymetrie, wahania oraz skoki. Nie bez znaczenia pozostają przerwy w zasilaniu, napięcia przejściowe oraz harmoniczne, zarówno dla napięcia jak i prądu. Istotne jest wykrywanie napięć sygnalizacyjnych, które nakładają się na napięcie zasilania.
Analizatory stacjonarne są montowane na stałe w miejscu pomiaru. Obwody pomiarowe podłącza się w sposób bezpośredni lub pośredni, przy użyciu przekładników pomiarowych. Modele przenośne łączy się w sposób tymczasowy, za pomocą akcesoriów pomiarowych, takich jak krokodylki czy też cęgi.
W nowoczesnych analizatorach jakości zasilania uwzględnia się do kilku kanałów wejściowych. Czas rejestracji nieprawidłowości jest programowany i wynosi od 20 ms do 2 s. Przewiduje się możliwość pracy w trybie oscyloskopu oraz pomiaru nieustalonych wysokiej częstotliwości. Analiza może być przeprowadzana zarówno w sieciach jedno- jak i trójfazowych systemów 3-przewodowych, 4-przewodowych oraz bazujących na układzie Arona. Do wymiany danych z użytkownikiem są przeznaczone kolorowe ekrany dotykowe o rozdzielczości VGA. Prezentacja kątów fazowych między napięciami i prądami może bazować na wykresach wskazowych.
Nabyć możemy mierniki, które pozwalają na analizę jakości zasilania oraz pomiary podstawowych parametrów instalacji elektrycznej. Urządzenia te bardzo często są nazywane kombajnami pomiarowymi. To właśnie dzięki nim mogą być wykrywane anomalie napięciowe, a także rejestrowane napięcia, prądy i związane z nimi harmoniczne. Mierzy się również energię oraz moc czynną i bierną. Dzięki niektórym modelom jest możliwy, dzięki dodatkowej przystawce, pomiar impedancji pętli prądem do 244 A z rozdzielczością 0,1 mΩ.
Interesujące rozwiązania stanowią mierniki cęgowe analizujące widma harmoniczne.
Filtry dolnoprzepustowe usuwają szumy o wysokich częstotliwościach. Nabyć można cęgówki, które pozwalają na pomiar wartości skutecznej TrueRMS prądu przemiennego oraz mocy czynnej, biernej oraz pozornej w zakresie do 600 kW/kVA/kVAR (nawet do 51. harmonicznej). Przydatne jest rejestrowanie przebiegów w określonym zakresie czasowym, celem oceny trendów lub problemów z jakością energii, powstających w efekcie działania krótkotrwałych zakłóceń.
Ciekawe rozwiązania stanowią cyfrowe mierniki, które przeznaczone są do pomiaru podstawowych parametrów przenośnych urządzeń elektrycznych. Zwróćmy uwagę, że dzięki ocenie tych wielkości zyskuje się bezpieczeństwo w kontekście pomiaru rezystancji przewodów ochronnych, rezystancji izolacji, ciągłości połączeń, a także prądów upływu i mocy. Niektóre mierniki mogą być używany do badań sprzętu, który jest wykonany zgodnie z normami:
W zakresie analizatorów zasilania na uwagę zasługują mierniki przenośne. Przewiduje się w nich oddzielne gniazdo zasilające. Tym sposobem urządzenie można podłączyć do dowolnych przekładników napięciowych, niezależnie od ich mocy. Podaje się również, że odrębne zasilanie pozwala na podłączenie analizatora do sieci stałoprądowych. Nowoczesne urządzenia przystosowane są zarówno do instalacji jedno- jak i trójfazowych bez przewodu neutralnego (gwiazda lub trójkąt). Na uwagę zasługuje intuicyjne oprogramowanie konfiguracyjne. Pozyskane dane można podejrzeć zarówno na bieżąco jak i historycznie. Do niektórych modeli opcjonalnie zastosowanie znajdują cęgi prądowe.
Nieco bardziej zaawansowane modele pozwalają na pomiar uziemień metodą techniczną (3p, 4p). W niektórych modelach pomiar jest przeprowadzany prądem o częstotliwości 125 Hz dzięki czemu zyskuje się wysoki poziom odporności na zakłócenia pochodzące od sieci elektroenergetycznej. Niejednokrotnie przewiduje się możliwość pomiaru rezystywności gruntu i niskich rezystancji. Przydatne rozwiązanie stanowi pomiar metodą dwucęgową a w niektórych sytuacjach pomiar bez konieczności stosowania sond pomocniczych wbijanych do gruntu. Na rynku nabyć można przyrządy przeznaczone do pomiarów uziemień w energetyce, w których zakres pomiarowy, zgodnie z normą PN-EN 61557, wynosi od 0,30 Ω.
Dużym uznaniem cieszą się mierniki zaawansowane. W niektórych urządzeniach tego typu przewidziano wszystkie znane metody pomiaru rezystancji uziemień. Stąd też badania mogą być przeprowadzane metodą techniczną również z użyciem dodatkowych cęgów (uziemienia wielokrotne). Istnieje możliwość wykonania pomiaru metodą dwucęgową oraz udarową. Dzięki metodzie dwucęgowej zyskuje się możliwość wykonania pomiarów rezystancji uziemień bez konieczności stosowania sond pomocniczych wbijanych do gruntu. Metodę udarową stosuje się przy diagnozowaniu uziemień odgromowych oraz przy pomiarach uziemień rozległych, wielokrotnych, które są połączone pod ziemią, bez konieczności ingerowania w obwód. Podkreśla się możliwość zastosowania przy pomiarze metody udarowej. Należy zwrócić uwagę, że pozwala ona na wykonanie pomiarów zgodnie z normą PN-EN 62305 – konieczność pomiaru impedancji uziemienia.
W ramach podsumowania warto wspomnieć o przyrządach przeznaczonych do badań instalacji fotowoltaicznych. Urządzenia tego typu uwzględnia się podczas badań sprawności jednofazowej instalacji fotowoltaicznej. Zyskuje się więc możliwość określenia charakterystyki napięciowo- prądowej modułów PV. W niektórych modelach przewidziano rejestrator przeznaczony do pomiarów strumienia promieniowania słonecznego oraz temperatury. Synchronizacja między przyrządem głównym oraz oddalonym rejestratorem dokonywana jest poprzez radiową łączność bezprzewodową (RF). Przydatne rozwiązanie stanowi baza danych modułów PV, która może być aktualizowana.
Damian Żabicki